DAILY HOT NEWS AND UPDATES

The site you were always looking for, come one come all

Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral –...

Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral –...





  • 1.

    Weiner, S. & Dove, P. M. An overview of biomineralization processes and the problem of the vital effect. Rev. Mineral. Geochem.

    54, 1–29 (2003).



  • 2.

    Weiner, S. & Addadi, L. Design strategies in mineralized biological materials. J. Mater. Chem.

    7, 689–702 (1997).



  • 3.

    Arias, J. L. & Fernández, M. S. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem. Rev.

    108, 4475–4482 (2008).



  • 4.

    Churchill, H., Teng, H. & Hazen, R. M. Correlation of pH-dependent surface interaction forces to amino acid adsorption: Implications for the origin of life. Am. Mineral.

    89, 1048–1055 (2004).



  • 5.

    Addadi, L. & Weiner, S. Control and design principles in biological mineralization. Angew. Chem. Int. Ed.

    31, 153–169 (1992).



  • 6.

    Frølich, S. et al. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell. Cryst. Growth Des.

    15, 2761–2767 (2015).



  • 7.

    Schultz, L. N. et al. From nanometer aggregates to micrometer crystals: Insight into the coarsening mechanism of calcite. Cryst. Growth Des.

    14, 552–558 (2014).



  • 8.

    Henriksen, K., Young, J. R., Bown, P. R. & Stipp, S. L. S. Coccolith biomineralisation studied with atomic force microscopy. Palaeontology

    47, 725–743 (2004).



  • 9.

    Yang, M. J., Stipp, S. L. S. & Harding, J. Biological control on calcite crystallization by polysaccharides. Cryst. Growth Des.

    8, 4066–4074 (2008).



  • 10.

    Borman, A. H. et al. The role in CaCO3 crystallization of an acid CA-2+ -binding polysaccharide associated with coccoliths of EMILIANIA-HUXLEYI. Eur. J. Biochem.

    129, 179–183 (1982).



  • 11.

    Anning, T., Nimer, N., Merrett, M. J. & Brownlee, C. Costs and benefits of calcification in coccolithophorids. Journal of Marine Systems

    9, 45–56 (1996).



  • 12.

    Ioannou, I., Hoff, W. D. & Hall, C. On the role of organic adlayers in the anomalous water sorptivity of Lepine limestone. J. Colloid Interface Sci.

    279, 228–234 (2004).



  • 13.

    Matthiesen, J. et al. How naturally adsorbed material on minerals affects low salinity enhanced oil recovery. Energy Fuels

    28, 4849–4858 (2014).



  • 14.

    Matthiesen, J., Hassenkam, T., Bovet, N., Dalby, K. N. & Stipp, S. L. S. Adsorbed Organic Material and Its Control on Wettability. Energy Fuels (2016).



  • 15.


    Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science. Vol. 49 (Mineralogical Society of America, 2002).



  • 16.

    Russell, T. P. X-ray and neutron reflectivity for the investigation of polymers. Mater. Sci. Rep.

    5, 171–271 (1990).



  • 17.

    Parratt, L. G. Surface studies of solids by total reflection of X-rays. Phys. Rev.

    95, 359–369 (1954).



  • 18.

    Als-Nielsen, J. & McMorrow, D. Elements of Modern X-ray Physics. 2nd edn, (Wiley, 2011).



  • 19.

    Cowley, R. A. & Ryan, T. W. X-ray-scattering studies of thin-films and surfaces – Thermal oxides on silicon. J. Phys. D: Appl. Phys.

    20, 61–68 (1987).



  • 20.

    Dysthe, D. K., Wogelius, R. A., Tang, C. C. & Nield, A. A. Evolution of mineral-fluid interfaces studied at pressure with synchrotron X-ray techniques. Chem. Geol.

    230, 232–241 (2006).



  • 21.

    Weber, W. & Lengeler, B. Diffuse-Scattering of hard X-rays from rough surfaces. Phys. Rev. B

    46, 7953–7956 (1992).



  • 22.

    Garoff, S., Sirota, E. B., Sinha, S. K. & Stanley, H. B. The effects of substrate roughness on ultra thin water films. J. Chem. Phys.

    90, 7505–7515 (1989).



  • 23.

    Scoppola, E. et al. Structure of a liquid/liquid interface during solvent extraction combining X-ray and neutron reflectivity measurements. PCCP

    17, 15093–15097 (2015).



  • 24.

    Fenter, P. & Sturchio, N. C. Mineral-water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci.

    77, 171–258 (2004).



  • 25.

    Fenter, P. et al. Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta

    64, 1221–1228 (2000).



  • 26.

    Geissbuhler, P. et al. Three-dimensional structure of the calcite-water interface by surface X-ray scattering. Surf. Sci.

    573, 191–203 (2004).



  • 27.

    Braslau, A. et al. Surface roughness of water measured by X-ray reflectivity. Phys. Rev. Lett.

    54, 114–117 (1985).



  • 28.

    Bohr, J., Wogelius, R. A., Morris, P. M. & Stipp, S. L. S. Thickness and structure of the water film deposited from vapour on calcite surfaces. Geochim. Cosmochim. Acta

    74, 5985–5999 (2010).



  • 29.

    Farquhar, M. L., Wogelius, R. A. & Tang, C. C. In situ synchrotron X-ray reflectivity study of the oligoclase feldspar mineral–fluid interface. Geochim. Cosmochim. Acta

    63, 1587–1594 (1999).



  • 30.

    Jin, H. et al. X-ray studies of self-assembled organic monolayers grown on hydrogen-terminated Si(III). Langmuir

    20, 6252–6258 (2004).



  • 31.

    Wasserman, S. R. et al. The structure of self- assembled monolayers of alkylsiloxanes on silicon -A comparison of results from ellipsometry and Low-Angle X-ray Reflectivity. J. Am. Chem. Soc.

    111, 5852–5861 (1989).



  • 32.

    Pavese, A., Catti, M., Parker, S. C. & Wall, A. Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3. Phys. Chem. Miner.

    23, 89–93 (1996).



  • 33.

    Keller, K. S., Olsson, M. H. M., Yang, M. & Stipp, S. L. S. Adsorption of ethanol and water on calcite: Dependence on surface geometry and effect on surface behavior. Langmuir

    31, 3847–3853 (2015).



  • 34.

    Sand, K. K. et al. Binding of ethanol on calcite: The role of the OH bond and its relevance to biomineralization. Langmuir

    26, 15239–15247 (2010).



  • 35.

    Bovet, N., Yang, M., Javadi, M. S. & Stipp, S. L. S. Interaction of alcohols with the calcite surface. PCCP

    17, 3490–3496 (2015).



  • 36.

    Pasarin, I. S. et al. Molecular ordering of ethanol at the calcite surface. Langmuir

    28, 2545–2550 (2012).



  • 37.

    Stipp, S. L. & Hochella, M. F. Structure and bonding environments at the calcite surface as observed with X-ray photoelectron-spectroscopy (XPS) and low-energy electron-diffraction (LEED). Geochim. Cosmochim. Acta

    55, 1723–1736 (1991).



  • 38.

    de Leeuw, N. H. & Parker, S. C. Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces. J. Chem. Soc., Faraday Trans.

    93, 467–475 (1997).



  • 39.

    Chiarello, R. P., Wogelius, R. A. & Sturchio, N. C. In-situ synchrotron X-ray reflectivity measurements at the calcite-water interface. Geochim. Cosmochim. Acta

    57, 4103–4110 (1993).



  • 40.

    Brown, G. E. & Calas, G. Mineral-Aqueous solution interfaces and their impact on the environment. Geochem. Perspect.

    1, 483–742 (2012).



  • 41.

    Tidswell, I. M. et al. Wetting films on chemically modified surfaces – An X-ray study. Phys. Rev. B

    44, 10869–10879 (1991).



  • 42.

    Bonn, D. & Ross, D. Wetting transitions. Rep. Prog. Phys.

    64, 1085–1163 (2001).



  • 43.

    Bonn, D., Bertrand, E., Meunier, J. & Blossey, R. Dynamics of wetting layer formation. Phys. Rev. Lett.

    84, 4661–4664 (2000).



  • 44.

    Cooke, D. J., Gray, R. J., Sand, K. K., Stipp, S. L. S. & Elliott, J. A. Interaction of ethanol and water with the {10.4} surface of calcite. Langmuir

    26, 14520–14529 (2010).



  • 45.

    Ataman, E., Andersson, M. P., Ceccato, M., Bovet, N. & Stipp, S. L. S. Functional group adsorption on calcite: I. Oxygen containing and nonpolar organic molecules. J. Phys. Chem. C

    120, 16586–16596 (2016).



  • 46.


    NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101

    http://cccbdb.nist.gov/ (2015).



  • 47.

    Israelachvili, J. N. Intermolecular and Surface Forces. 3rd edn, (Academic Press, 2011).



  • 48.

    Okhrimenko, D. V., Nissenbaum, J., Andersson, M. P., Olsson, M. H. M. & Stipp, S. L. S. Energies of the adsorption of functional groups to calcium carbonate polymorphs: The importance of -OH and -COOH groups. Langmuir

    29, 11062–11073 (2013).



  • 49.

    Ghatee, M. H., Koleini, M. M. & Ayatollahi, S. Molecular dynamics simulation investigation of hexanoic acid adsorption onto calcite  (101¯4) surface. Fluid Phase Equilib.

    387, 24–31 (2015).



  • 50.

    Islam, M. M., Diawara, B., Marcus, P. & Costa, D. Synergy between iono-covalent bonds and van der Waals interactions in SAMs formation: A first-principles study of adsorption of carboxylic acids on the Zn–ZnO(0 0 0 1) surface. Catal. Today

    177, 39–49 (2011).



  • 51.

    Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev.

    96, 1533–1554 (1996).



  • 52.

    Haddad, J. et al. Order and Melting in Self-Assembled Alkanol Monolayers on Amorphous SiO2. J. Phys. Chem. C

    119, 17648–17654 (2015).



  • 53.

    Berge, B. et al. Melting of short 1-Alcohol monolayers on water – Thermodynamics and X-ray-Scattering studies. Phys. Rev. Lett.

    73, 1652–1655 (1994).



  • 54.

    Rieu, J. P. et al. Melting of 1-Alcohol Mololayers at the Air-Water Interface. I. X-Ray Reflectivity Investigations. J. Phys. II France

    5, 607–619 (1995).



  • 55.

    Straasø, T., Müter, D., Sørensen, H. O. & Als-Nielsen, J. Objective algorithm to separate signal from noise in a Poisson-distributed pixel data set. J. Appl. Crystallogr.

    46, 663–671 (2013).



  • 56.

    Whiting, G. L. et al. Enhancement of charge-transport characteristics in polymeric films using polymer brushes. Nano Lett.

    6, 573–578 (2006).



  • 57.

    Zhou, X.-L. & Chen, S.-H. Theoretical foundation of X-ray and neutron reflectometry. Phys. Rep.

    257, 223–348 (1995).



  • 58.

    Tolan, M. & Press, W. X-ray and neutron reflectivity. Zeitschrift Fur Kristallographie

    213, 319–336 (1998).



  • 59.

    Fermon, C., Ott, F. & Menelle, A. In X-ray and Neutron Reflectivity: Principles and Applications (eds Jean Daillant & Alain Gibaud) 183–234 (Springer Berlin Heidelberg, 2009).



  • 60.

    Material Studio and MS Visualizer v. Release 5.0, Accelerys Software Inc.



  • 61.

    Van der Spoel, D. et al. GROMACS: Fast, flexible, and free. J. Comput. Chem.

    26, 1701–1718 (2005).



  • 62.

    Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput.

    4, 435–447 (2008).



  • 63.

    Berendsen, H. J. C., Vanderspoel, D. & Vandrunen, R. GROMACS – A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun.

    91, 43–56 (1995).



  • 64.

    Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys.

    72, 2384–2393 (1980).



  • 65.

    Hockney, R. W., Goel, S. P. & Eastwood, J. W. Quiet high-resolution computer models of a plasma. J. Comput. Phys.

    14, 148–158 (1974).



  • 66.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics Modell.

    14, 33–38 (1996).



  • 67.

    Wang, J. M., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graphics Modell.

    25, 247–260 (2006).



  • 68.

    Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem.

    25, 1157–1174 (2004).



  • 69.

    Freeman, C. L. et al. New forcefields for modeling biomineralization processes. J. Phys. Chem. C

    111, 11943–11951 (2007).



  • 70.

    Wormington, M., Panaccione, C., Matney, K. M. & Bowen, D. K. Characterization of structures from X-ray scattering data using genetic algorithms. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences

    357, 2827–2848 (1999).



  • 71.

    Farquhar, M. L. et al. Surface oxidation of rhodonite: structural and chemical study by surface scattering and glancing incidence XAS techniques. Mineral. Mag.

    67, 1205–1219 (2003).







  • Source link


    Share on Google Plus
    Post a Comment

    Join us

    Google+ Followers