Architecture of the type IV coupling protein complex of Legionella pneumophila

Architecture of the type IV coupling protein complex of Legionella pneumophila





  • 1.

    , & Microreview: type IV secretion systems: versatility and diversity in function. Cell. Microbiol. 12, 1203–1212 (2010).



  • 2.

    , , , & Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 85, 378–391 (2012).



  • 3.

    , , & Coupling factors in macromolecular type-IV secretion machineries. Curr. Pharm. Des. 10, 1551–1565 (2004).



  • 4.

    , & Assembly and mechanisms of bacterial type IV secretion machines. Phil. Trans. R. Soc. Lond. B 367, 1073–1087 (2012).



  • 5.

    et al. Virb/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979–982 (2000).



  • 6.

    , , , & Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res. 31, 860–868 (2003).



  • 7.

    , & Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol. Microbiol. 54, 1199–1211 (2004).



  • 8.

    , , & Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J. Mol. Biol. 341, 961–977 (2004).



  • 9.

    , & The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7, 13–24 (2009).



  • 10.

    & Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell. Microbiol. 17, 935–950 (2015).



  • 11.

    & Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19 (1993).



  • 12.

    , , & Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc. Natl Acad. Sci. USA 89, 9607–9611 (1992).



  • 13.

    , & Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl Acad. Sci. USA 95, 1669–1674 (1998).



  • 14.

    , , & Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876 (1998).



  • 15.

    , & Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell. Microbiol. 10, 2377–2386 (2008).



  • 16.

    & Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360 (2000).



  • 17.

    et al. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 62, 1278–1291 (2006).



  • 18.

    et al. The DotL protein, a member of the TraG-coupling protein family, is essential for viability of Legionella pneumophila strain Lp02. J. Bacteriol. 187, 2927–2938 (2005).



  • 19.

    , , & Conjugative plasmid protein TrwB, an integral membrane type IV secretion system coupling protein—detailed structural features and mapping of the active site cleft. J. Biol. Chem. 277, 7556–7566 (2002).



  • 20.

    , , & The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog. 8, e1002910 (2012).



  • 21.

    & The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3, e188 (2007).



  • 22.

    & Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).



  • 23.

    , , & The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 44, W410–W415 (2016).



  • 24.

    , , & lvgA, a novel Legionella pneumophila virulence factor. Infect. Immun. 71, 2394–2403 (2003).



  • 25.

    & The Legionella pneumophila IcmS–LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol. Microbiol. 61, 596–613 (2006).



  • 26.

    , & Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000).



  • 27.

    & Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 47, 5.6.1–5.6.37 (2014).



  • 28.

    , & IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol. Microbiol. 56, 90–103 (2005).



  • 29.

    et al. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol. Microbiol. 38, 719–736 (2000).



  • 30.

    , , , & Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect. Immun. 78, 1123–1134 (2010).



  • 31.

    , , & The Legionella IcmS–IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol. Microbiol. 55, 912–926 (2005).



  • 32.

    et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).



  • 33.

    , & A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles. PLoS Pathog. 5, e1000278 (2009).



  • 34.

    et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001).



  • 35.

    et al. Structural basis of specific TraD–TraM recognition during F plasmid-mediated bacterial conjugation. Mol. Microbiol. 70, 89–99 (2008).



  • 36.

    , & Vire2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol. Microbiol. 49, 1699–1713 (2003).



  • 37.

    et al. Chimeric coupling proteins mediate transfer of heterologous type IV effectors through the Escherichia coli pKM101-encoded conjugation machine. J. Bacteriol. 198, 2701–2718 (2016).



  • 38.

    et al. The all-alpha domains of coupling proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-encoded type IV secretion systems confer specificity to binding of cognate DNA substrates. J. Bacteriol. 197, 2335–2349 (2015).



  • 39.

    , & Bacterial type IV secretion systems: versatile virulence machines. Future Microbiol. 7, 241–257 (2012).



  • 40.

    & From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol. 8, 202–204 (2000).



  • 41.

    , & The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6, 7–14 (2003).



  • 42.

    & Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81 (2001).



  • 43.

    et al. A C-terminal translocation signal required for Dot/lcm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl Acad. Sci. USA 102, 826–831 (2005).



  • 44.

    et al. The E block motif is associated with Legionella pneumophila translocated substrates. Cell. Microbiol. 13, 227–245 (2011).



  • 45.

    et al. Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc. Natl Acad. Sci. USA 110, E707–E715 (2013).



  • 46.

    , & Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol. Microbiol. 57, 70–84 (2005).



  • 47.

    , , , & Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).



  • 48.

    et al. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat. Chem. Biol. 5, 469–478 (2009).



  • 49.

    et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).



  • 50.

    et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).



  • 51.

    & Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol. 276, 307–326 (1997).



  • 52.

    , , & Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).



  • 53.

    et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).



  • 54.

    , & Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).



  • 55.

    , & CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).



  • 56.

    & GNOM—a program package for small-angle scattering data-processing. J. Appl. Crystallogr. 24, 537–540 (1991).



  • 57.

    et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88, 2939–2953 (2005).



  • 58.

    , , , & Dynamic release of bending stress in short dsDNA by formation of a kink and forks. Angew. Chem. Int. Ed. 54, 8943–8947 (2015).



  • 59.

    , & A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).



  • 60.

    , , & Single-molecule pull-down for studying protein interactions. Nat. Protoc. 7, 445–452 (2012).



  • 61.

    et al. Template based protein structure modeling by global optimization in CASP11. Proteins 84(Suppl. 1), 221–232 (2016).



  • 62.

    , , , & Multiple sequence alignment by conformational space annealing. Biophys. J. 95, 4813–4819 (2008).



  • 63.

    , & New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J. Comput. Chem. 18, 1222–1232 (1997).



  • 64.

    , & Unbiased global optimization of Lennard–Jones clusters for N < or = 201 using the conformational space annealing method. Phys. Rev. Lett. 91, 080201 (2003).



  • 65.

    et al. All-atom chain-building by optimizing MODELLER energy function using conformational space annealing. Proteins 75, 1010–1023 (2009).



  • 66.

    , & Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778–795 (2009).







  • Source link


    Comments

    Popular posts from this blog

    Alcohol, Aging, and Curing Cancer