Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette

Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette





  • 1.

    Becker, J., Zelder, O., Häfner, S., Schröder, H. & Wittmann, C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering

    13, 159–168 (2011).



  • 2.

    Inui, M. et al. Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology (Reading, England)

    153, 2491–2504 (2007).



  • 3.

    Becker, J. & Wittmann, C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Current Opinion in Biotechnology

    23, 631–640 (2011).



  • 4.

    Bommareddy, R. R., Chen, Z., Rappert, S. & Zeng, A. P. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metabolic Engineering

    25, 30–37 (2014).



  • 5.

    Cleto, S., Jensen, J., Wendisch, V. F. & Lu, T. K. Corynebacterium glutamicum MetabolicEngineering with CRISPR Interference (CRISPRi). Acs Synthetic Biology

    5, 375 (2016).



  • 6.

    Jäger, W., Schäfer, A., Pühler, A., Labes, G. & Wohlleben, W. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. Journal of bacteriology

    174, 5462–5465 (1992).



  • 7.

    Ma, W. et al. Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker. Biotechnology Letters

    37, 609–617 (2015).



  • 8.

    Okibe, N., Suzuki, N., Inui, M. & Yukawa, H. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. Journal of Microbiological Methods

    85, 155–163 (2011).



  • 9.

    Suzuki, N., Nonaka, H., Tsuge, Y., Inui, M. & Yukawa, H. New Multiple-Deletion Method for the Corynebacterium glutamicum Genome, Using a Mutant lox Sequence. Applied & Environmental Microbiology

    71, 8472–8480 (2006).



  • 10.

    Vertès, A. A., Inui, M. & Yukawa, H. Manipulating corynebacteria, from individual genes to chromosomes. Applied & Environmental Microbiology

    71, 7633–7642 (2005).



  • 11.

    Suzuki, N. et al. Large-Scale Engineering of the Corynebacterium glutamicum Genome. Applied & Environmental Microbiology

    71, 3369–3372 (2005).



  • 12.

    Yangyong Lv, J. L., Wu, Z., Han, S., Lin, Y. & Zheng, S. Genome Sequence of Corynebacterium glutamicum ATCC 14067, Which Provides Insight into Amino Acid Biosynthesis in Coryneform Bacteria. Journal of bacteriology

    194, 742 (2012).



  • 13.

    Xu, D., Tan, Y., Li, Y. & Wang, X. Construction of a novel promoter-probe vector and its application for screening strong promoter for Brevibacterium flavum metabolic engineering. World Journal of Microbiology and Biotechnology

    27, 961–968 (2011).



  • 14.

    Miyajima, R., Otsuka, S. & Shiio, I. Regulation of Aspartate Family Amino Acid Biosynthesis in Brevibacterium flavumI. Inhibition by Amino Acids of the Enzymes in Threonine Biosynthesis. Journal of Biochemistry

    63, 139 (1968).



  • 15.

    Hermann, T. et al. Proteome analysis of Corynebacterium glutamicum. Electrophoresis

    22, 1712–1723 (2001).



  • 16.

    Eggeling, L. & Bott, M. Handbook of corynebacterium glutamicum. Taylor & Francis (2005).



  • 17.

    Hu, J. et al. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid

    70, 303–313 (2013).



  • 18.

    Mille, C. et al. Identification of a New Family of Genes Involved in β-1,2-Mannosylation of Glycans in Pichia pastoris and Candida albicans. Journal of Biological Chemistry

    283, 9724–9736 (2008).



  • 19.

    Pan, R. et al. Sequential deletion of Pichia pastoris genes by a self-excisable cassette. Fems Yeast Research

    11, 292–298 (2011).



  • 20.

    Schäfer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene

    145, 69–73 (1994).



  • 21.

    Murphy, K. C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. Journal of bacteriology

    180, 2063–2071 (1998).



  • 22.

    Yang, P., Wang, J. & Qi, Q. Prophage recombinases-mediated genome engineering in Lactobacillus plantarum. Microbial Cell Factories

    14, 1–11 (2015).



  • 23.

    Swingle, B., Bao, Z., Markel, E., Chambers, A. & Cartinhour, S. Recombineering using RecTE from Pseudomonas syringae. Applied & Environmental Microbiology

    76, 4960–4968 (2010).



  • 24.

    Gottesman, M. M., Gottesman, M. E., Gottesman, S. & Martin, G. Characterization of bacteriophage λ reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. Journal of molecular biology

    88, 471 (1974).



  • 25.

    Zhang, Y., Buchholz, F., Muyrers, J. P. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nature Genetics

    20, 123–128 (1998).



  • 26.

    Gottesman, M. M., Gottesman, M. E., Gottesman, S. & Gellert, M. Characterization of bacteriophage lambda reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. Journal of molecular biology

    88, 471–478 (1974).



  • 27.

    Binder, S., Siedler, S., Marienhagen, J., Bott, M. & Eggeling, L. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Research

    41, 6360–6369 (2013).



  • 28.

    Mustafi, N., Grünberger, A., Kohlheyer, D., Bott, M. & Frunzke, J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metabolic Engineering

    14, 449 (2012).



  • 29.

    Datta, S., Costantino, N., Zhou, X. & Court, D. L. Identification and Analysis of Recombineering Functions from Gram-Negative and Gram-Positive Bacteria and Their Phages. Proceedings of the National Academy of Sciences

    105, 1626–1631 (2008).



  • 30.

    Van Kessel, J. C. & Hatfull, G. F. Recombineering in Mycobacterium tuberculosis. Nature Methods

    4, 147–152 (2007).



  • 31.

    Bao, Z., Cartinhour, S. & Swingle, B. Substrate and Target Sequence Length Influence RecTEPsy Recombineering Efficiency in Pseudomonas syringae. Plos One

    7, e50617 (2012).



  • 32.

    Muyrers, J. P., Zhang, Y., Buchholz, F. & Stewart, A. F. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes & Development

    14, 1971–1982 (2000).



  • 33.

    van Kessel, J. C., Marinelli, L. J. & Hatfull, G. F. Recombineering mycobacteria and their phages. Nature Reviews Microbiology

    6, 851–857 (2008).



  • 34.

    Inui, M. et al. Metabolic Analysis of Corynebacterium glutamicum during Lactate and Succinate Productions under Oxygen Deprivation Conditions. Journal of Molecular Microbiology & Biotechnology

    7, 182 (2004).



  • 35.

    Topp, S. et al. Synthetic riboswitches that induce gene expression in diverse bacterial species. Applied & Environmental Microbiology

    76, 7881 (2010).



  • 36.

    Suess, B., Fink, B., Berens, C., Stentz, R. & Hillen, W. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Research

    32, 1610–1614 (2004).







  • Source link


    Comments

    Popular posts from this blog

    Alcohol, Aging, and Curing Cancer