Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames...

Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames...





  • 1.

    O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations (2016).



  • 2.

    Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science

    351, https://doi.org/10.1126/science.aad3292 (2016).



  • 3.

    Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics

    40, 277–283 (2015).



  • 4.

    Odeyemi, O. A. & Ahmad, A. Population dynamics, antibiotics resistance and biofilm formation of Aeromonas and Vibrio species isolated from aquatic sources in Northern Malaysia. Microbial Pathogenesis

    103, 178–185 (2017).



  • 5.

    Olga, P., Apostolos, V., Alexis, G., George, V. & Athena, M. Antibiotic resistance profiles of Pseudomonas aeruginosa isolated from various Greek aquatic environments. Fems Microbiology Ecology

    92, https://doi.org/10.1093/femsec/fiw042 (2016).



  • 6.

    Kittinger, C. et al. Enterobacteriaceae isolated from the River Danube: antibiotic resistances, with a focus on the presence of ESBL and carbapenemases. Plos One

    11, https://doi.org/10.1371/journal.pone.0165820 (2016).



  • 7.

    Kittinger, C. et al. Antibiotic resistance patterns o Pseudomonas spp. isolated from the River Danube. Frontiers in Microbiology

    7, https://doi.org/10.3389/Fmicb.2016.00586 (2016).



  • 8.

    Titilawo, Y., Obi, L. & Okoh, A. Antimicrobial resistance determinants of Escherichia coli isolates recovered from some rivers in Osun State, South-Western Nigeria: Implications for public health. Science of the Total Environment

    523, 82–94 (2015).



  • 9.

    Yu, W. C., Zhan, S. H., Shen, Z. Q., Zhou, Q. X. & Yang, D. Efficient removal mechanism for antibiotic resistance genes from aquatic environments by graphene oxide nanosheet. Chemical Engineering Journal

    313, 836–846 (2017).



  • 10.

    Yang, Y. Y., Liu, W. Z., Xu, C., Wei, B. Q. & Wang, J. Antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze River, China: Effect of land use and sediment characteristics. Chemosphere

    178, 19–25 (2017).



  • 11.

    Nishiyama, M., Ogura, Y., Hayashi, T. & Suzuki, Y. Antibiotic resistance profiling and genotyping of vancomycin-resistant Enterococci collected from an urban river basin in the provincial City of Miyazaki, Japan. Water

    9, https://doi.org/10.3390/W9020079 (2017).



  • 12.

    Calero-Caceres, W., Mendez, J., Martin-Diaz, J. & Muniesa, M. The occurrence of antibiotic resistance genes in a Mediterranean river and their persistence in the riverbed sediment. Environmental Pollution

    223, 384–394 (2017).



  • 13.

    Laffite, A. et al. Hospital effluents are one of several sources of metal, antibiotic resistance genes, and bacterial markers disseminated in Sub-Saharan urban rivers. Frontiers in Microbiology

    7, https://doi.org/10.3389/Fmicb.2016.01128 (2016).



  • 14.

    Tao, Y. F. et al. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell Raman microspectroscopy. Analytical Chemistry

    89, 4108–4115 (2017).



  • 15.

    Bergkessel, M., Basta, D. W. & Newman, D. K. The physiology of growth arrest: uniting molecular and environmental microbiology. Nature Reviews Microbiology

    14, 549–562 (2016).



  • 16.

    Martinez, J. L., Coque, T. M. & Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiol

    13, 116–123 (2015).



  • 17.

    Huang, W. E., Griffiths, R. I., Thompson, I. P., Bailey, M. J. & Whiteley, A. S. Raman microscopic analysis of single microbial cells. Analytical Chemistry

    76, 4452–4458 (2004).



  • 18.

    Huang, W. E., Li, M., Jarvis, R. M., Goodacre, R. & Banwart, S. A. Shining light on the microbial world: The application of Raman microspectroscopy. Advances in Applied Microbiology

    70, 153–186 (2010).



  • 19.

    Li, M. Q., Xu, J., Romero-Gonzalez, M., Banwart, S. A. & Huang, W. E. Single cell Raman spectroscopy for cell sorting and imaging. Current Opinion in Biotechnology

    23, 56–63 (2012).



  • 20.

    Xu, J., Webb, I., Poole, P. & Huang, W. E. Label-free discrimination of Rhizobial bacteroids and mutants by single-cell Raman microspectroscopy. Analytical Chemistry

    89, 6336–6340 (2017).



  • 21.

    Wang, T. et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnology for Biofuels

    7, https://doi.org/10.1186/1754-6834-7-58 (2014).



  • 22.

    Li, M. et al. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. Isme Journal

    6, 875–885 (2012).



  • 23.

    Huang, W. E., Ude, S. & Spiers, A. J. Pseudomonas fluorescens SBW25 biofilm and planktonic cells have differentiable Raman spectral profiles. Microbial Ecology

    53, 471–474 (2007).



  • 24.

    Huang, W. E. et al. Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization. Applied and Environmental Microbiology

    75, 234–241 (2009).



  • 25.

    Wang, Y. et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Analytical Chemistry

    88, 9443–9450 (2016).



  • 26.

    Berry, D. et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proceedings of the National Academy of Sciences of the United States of America

    112, E194–E203 (2015).



  • 27.

    Song, Y. et al. Single‐cell genomics based on Raman sorting reveals novel carotenoid‐containing bacteria in the Red Sea. Microbial Biotechnology

    10, 125–137 (2017).



  • 28.

    Parker, J. L. & Shaw, J. G. Aeromonas spp. clinical microbiology and disease. Journal of Infection

    62, 109–118 (2011).



  • 29.

    Riaz, K. et al. Emergence of a novel white stripe disease pathogen Stenotrophomonas maltophilia strain Sia5 in rice fields of Punjab under the climate change scenario. Phytopathology

    106, 120–120 (2016).



  • 30.

    Nayyar, C., Thakur, P., Tak, V. & Saigal, K. Stenotrophomonas maltophilia: an emerging pathogen in paediatric population. Journal of Clinical and Diagnostic Research

    11, Dc8–Dc11 (2017).



  • 31.

    Chung, H. et al. Global and local selection acting on the pathogen Stenotrophomonas maltophilia in the human lung. Nature Communications

    8, https://doi.org/10.1038/Ncomms14078 (2017).



  • 32.

    Corlouer, C. et al. Stenotrophomonas maltophilia healthcare-associated infections: identification of two main pathogenic genetic backgrounds. Journal of Hospital Infection

    96, 183–188 (2017).



  • 33.

    Dinel, B. A., Ayotte, D. L., Behme, R. J., Black, B. L. & Whitby, J. L. Comparative stability of antibiotic admixtures in minibags and minibottles. Drug Intelligence & Clinical Pharmacy

    11, 226–239 (1977).



  • 34.

    Xiong, W., Sun, Y., Ding, X., Zhang, Y. & Zeng, Z. Antibiotic resistance genes occurrence and bacterial community composition in the Liuxi River. Frontiers in Environmental Science

    2, https://doi.org/10.3389/fenvs.2014.00061 (2014).



  • 35.

    Khan, G. A., Berglund, B., Khan, K. M., Lindgren, P.-E. & Fick, J. Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities – a study in Pakistan. Plos One

    8, e62712 (2013).



  • 36.

    McPhearson, R. M., DePaola, A., Zywno, S. R., Motes, M. L. & Guarino, A. M. Antibiotic resistance in Gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture

    99, 203–211 (1991).



  • 37.

    Cao, H. P., Long, X. W., Lu, L. Q., Yang, X. L. & Chen, B. Y. Citrobacter freundii: a causative agent for Tail Rot Disease in freshwater cultured Japanese Eel Anguilla japonica. Israeli Journal of Aquaculture-Bamidgeh

    68, 1–7 (2016).



  • 38.

    Gallani, S. U., Sebastiao, F. D., Valladao, G. M. R., Boaratti, A. Z. & Pilarski, F. Pathogenesis of mixed infection by Spironucleus sp and Citrobacter freundii in freshwater angelfish Pterophyllum scalare. Microbial Pathogenesis

    100, 119–123 (2016).



  • 39.

    Rocke, J., Roydhouse, T. & Spencer, T. Canaliculitis caused by Citrobacter freundii. Clinical and Experimental Ophthalmology

    44, 856–858 (2016).



  • 40.

    Whalen, J. G., Mully, T. W. & English, J. C. 3rd Spontaneous Citrobacter freundii infection in an immunocompetent patient. Arch Dermatol

    143, 124–125 (2007).



  • 41.

    Liberale, C. et al. Integrated microfluidic device for single-cell trapping and spectroscopy. Scientific Reports

    3, 1258, https://doi.org/10.1038/srep01258 (2013).



  • 42.

    Pachter, L. Interpreting the unculturable majority. Nature Methods

    4, 479–480 (2007).



  • 43.

    Haglund, A.-L., Lantz, P., Törnblom, E. & Tranvik, L. Depth distribution of active bacteria and bacterial activity in lake sediment. Fems Microbiology Ecology

    46, 31–38 (2003).



  • 44.

    Yamaguchi, N., Kenzaka, T. & Nasu, M. Rapid in situ enumeration of physiologically active bacteria in river waters using fluorescent probes. Microbes and environments

    12, 1–8 (1997).



  • 45.

    Klammer, S. et al. Dynamics of bacterial abundance, biomass, activity, and community composition in the oligotrophic Traunsee and the Traun River (Austria). Water, Air and Soil Pollution: Focus

    2, 137–163 (2002).



  • 46.

    Ogawa, M., Tani, K., Yamaguchi, N. & Nasu, M. Development of multicolour digital image analysis system to enumerate actively respiring bacteria in natural river water. Journal of Applied Microbiology

    95, 120–128 (2003).



  • 47.

    Freese, H. M., Karsten, U. & Schumann, R. Bacterial abundance, activity, and viability in the eutrophic River Warnow, Northeast Germany. Microbial Ecology

    51, 117–127 (2006).



  • 48.

    Luna, G. M., Manini, E. & Danovaro, R. Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Applied and Environmental Microbiology

    68, 3509–3513 (2002).



  • 49.

    Novitsky, J. A. Microbial growth rates and biomass production in a marine sediment: evidence for a very active but mostly nongrowing community. Applied and Environmental Microbiology

    53, 2368–2372 (1987).



  • 50.

    Zweifel, U. L. & Hagstrom, A. Total counts of marine bacteria include a large fraction of non-nucleoid-containing bacteria (ghosts). Applied and Environmental Microbiology

    61, 2180–2185 (1995).



  • 51.

    Hunger, M., Schmucker, R., Kishan, V. & Hillen, W. Analysis and nucleotide-sequence of an origin of DNA-replication in Acinetobacter-Calcoaceticus and its use for Escherichia-coli shuttle plasmids. Gene

    87, 45–51 (1990).



  • 52.

    Wang, Y. et al. A culture-independent approach to unravel uncultured bacteria and functional genes in a complex microbial community. Plos One

    7, https://doi.org/10.1371/journal.pone.0047530 (2012).



  • 53.

    Marchesi, J. R. et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology

    64, 795–799 (1998).



  • 54.

    Andrews, J. M. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy

    48(Suppl 1), 5–16 (2001).



  • 55.

    European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clinical Microbiology and Infection

    9, 9–15 (2003).







  • Source link


    Comments

    Popular posts from this blog

    Alcohol, Aging, and Curing Cancer