Biodegradation of weathered polystyrene films in seawater microcosms

Biodegradation of weathered polystyrene films in seawater microcosms





  • 1.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science (80-.).

    347, 768–771 (2015).



  • 2.

    Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 1–10, http://dx.doi.org/10.1016/j.marenvres.2016.05.012 (2016).



  • 3.

    Eriksen, M. et al. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS One

    9, 1–15 (2014).



  • 4.

    Law, K. L. Plastic Accumulation in the North Atlantic Subtropical Gyre. Science (80-.).

    329, 1185–1188 (2010).



  • 5.

    Cózar, A. et al. Plastic accumulation in the mediterranean sea. PLoS One

    10, 1–12 (2015).



  • 6.

    Ruiz-Orejon, L. F., Sarda, R. & Ramis-Pujol, J. Floating plastic debris in the Central and Western Mediterranean Sea. Mar. Environ. Res.

    120, 136–144 (2016).



  • 7.

    Pedrotti, M. L. et al. Changes in the Floating Plastic Pollution of the Mediterranean Sea in Relation to the Distance to Land. PLoS One

    11, e0161581 (2016).



  • 8.

    Liubartseva, S., Coppini, G., Lecci, R. & Creti, S. Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Mar. Pollut. Bull.

    103, 115–127 (2016).



  • 9.

    Li, W. C., Tse, H. F. & Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total Environ.

    566–567, 333–349 (2016).



  • 10.

    Plastics Europe. Plastics – the Facts 2014/2015. An Analysis of European Plas- tics Production, Demand and Waste Data. Plastics 2015, http://dx.doi.org/10.1016/j.marpolbul.2013.01.015 (2015).



  • 11.

    Lobelle, D. & Cunliffe, M. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull.

    62, 197–200 (2011).



  • 12.

    Harrison, J. P., Schratzberger, M., Sapp, M. & Osborn, A. M. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol.

    14, 232 (2014).



  • 13.

    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, A. L. Life in the ‘Plastisphere’: Microbial communities on plastic marine debris. Environ. Sci. Technol.

    47, 7137–7146 (2013).



  • 14.

    Bryant, J. A. et al. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. mSystems

    1, e00024–16 (2016).



  • 15.

    Oberbeckmann, S., Loeder, M. G. J., Gerdts, G. & Osborn, A. M. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol.

    49, 478–492 (2014).



  • 16.

    Eich, A., Mildenberger, T., Laforsch, C. & Weber, M. Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: Early signs of degradation in the pelagic and benthic zone? PLoS One

    10, 1–16 (2015).



  • 17.

    Oberbeckmann, S., Osborn, A. M. & Duhaime, M. B. Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One

    11, 1–24 (2016).



  • 18.

    Harrison, J. P., Sapp, M., Schratzberger, M. & Osborn, A. M. Interactions Between Microorganisms and Marine Microplastics: A Call for Research. Mar. Technol. Soc. J.

    45, 12–20 (2011).



  • 19.

    Gilan, I. O., Hadar, Y. & Sivan, A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biotechnol.

    65, 97–104 (2004).



  • 20.

    Lucas, N. et al. Polymer biodegradation: Mechanisms and estimation techniques – A review. Chemosphere

    73, 429–442 (2008).



  • 21.

    Reisser, J. et al. Millimeter-sized marine plastics: A new pelagic habitat for microorganisms and invertebrates. PLoS One

    9, 1–11 (2014).



  • 22.

    Kowalczyk, A., Chyc, M., Ryszka, P. & Latowski, D. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environ. Sci. Pollut. Res. 1–8, http://dx.doi.org/10.1007/s11356-016-6563-y (2016).



  • 23.

    Artham, T. et al. Biofouling and stability of synthetic polymers in sea water. Int. Biodeterior. Biodegradation

    63, 884–890 (2009).



  • 24.

    Restrepo-Flórez, J. M., Bassi, A. & Thompson, M. R. Microbial degradation and deterioration of polyethylene – A review. Int. Biodeterior. Biodegrad.

    88, 83–90 (2014).



  • 25.

    Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethyleneterephthalate). Science (80-.).

    351, 1196–1199 (2016).



  • 26.

    Tian, L. et al. Mineralisation of 14C-labelled Polystyrene Plastics by Penicillium variabile After Ozonation Pre-treatment. N. Biotechnol. 5–9, http://dx.doi.org/10.1016/j.nbt.2016.07.008 (2016).



  • 27.

    Oberbeckmann, S., Löder, M. G. J. & Labrenz, M. Marine microplastic-associated biofilms – A review. Environ. Chem. 551–562, doi:10.1071/EN15069 (2015).



  • 28.

    Fazey, F. M. C. & Ryan, P. G. Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity. Environ. Pollut.

    210, 354–360 (2016).



  • 29.

    Artham, T. et al. Biofouling and stability of synthetic polymers in sea water. Int. Biodeterior. Biodegrad.

    63, 884–890 (2009).



  • 30.

    Krueger, M. C., Harms, H. & Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol.

    99, 8857–8874 (2015).



  • 31.

    Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv.

    26, 246–265 (2008).



  • 32.

    Ojeda, T. et al. Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene. Polym. Degrad. Stab.

    94, 2128–2133 (2009).



  • 33.

    Mor, R. & Sivan, A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: Biodegradation of polystyrene. Biodegradation

    19, 851–858 (2008).



  • 34.

    Palacios, M., García, O. & Rodríguez-Hernández, J. Constructing robust and functional micropatterns on polystyrene surfaces by using deep UV irradiation. Langmuir

    29, 2756–2763 (2013).



  • 35.

    Hadad, D., Geresh, S. & Sivan, A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol.

    98, 1093–1100 (2005).



  • 36.

    Bonhomme, S. et al. Environmental biodegradation of polyethylene. Polym. Degrad. Stab.

    81, 441–452 (2003).



  • 37.

    Fontanella, S. et al. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym. Degrad. Stab.

    95, 1011–1021 (2010).



  • 38.

    Andrady, A. L. The plastic in microplastics: A review. Mar. Pollut. Bull.

    119, 12–22 (2017).



  • 39.

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol.

    8, 15–25 (2010).



  • 40.

    Schluter, J., Nadell, C. D., Bassler, B. L. & Foster, K. R. Adhesion as a weapon in microbial competition. ISME J.

    9, 139–49 (2015).



  • 41.

    Chung, H. C. et al. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME J.

    4, 817–828 (2010).



  • 42.

    Syranidou, E. et al. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PlosOne

    12, e0183984 (2017).



  • 43.

    Briand, J.-F. et al. Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling

    28, 453–63 (2012).



  • 44.

    Salta, M., Wharton, J. A., Blache, Y., Stokes, K. R. & Briand, J. F. Marine biofilms on artificial surfaces: Structure and dynamics. Environ. Microbiol.

    15, 2879–2893 (2013).



  • 45.

    McCormick, A. R. et al. Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere

    7, e01556 (2016).



  • 46.

    McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J. & Kelly, J. J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol.

    48, 11863–11871 (2014).



  • 47.

    Skariyachan, S. et al. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environ. Monit. Assess.

    187, 4174 (2015).



  • 48.

    Kumar Sen, S. & Raut, S. Microbial degradation of low density polyethylene (LDPE): A review. J. Environ. Chem. Eng.

    3, 462–473 (2015).



  • 49.

    Acosta-González, A. & Marqués, S. Bacterial diversity in oil-polluted marine coastal sediments. Curr. Opin. Biotechnol.

    38, 24–32 (2016).



  • 50.

    Antoniou, E., Fodelianakis, S., Korkakaki, E. & Kalogerakis, N. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front. Microbiol.

    6, 1–14 (2015).



  • 51.

    Ron, E. Z. & Rosenberg, E. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol.

    27, 191–194 (2014).



  • 52.

    Guibert, L. M. et al. Alkane Biodegradation Genes from Chronically Polluted Subantarctic Coastal Sediments and Their Shifts in Response to Oil Exposure. Microb. Ecol.

    64, 605–616 (2012).



  • 53.

    Cardinale, M. et al. Comparison of Different Primer Sets for Use in Automated Ribosomal Intergenic Spacer Analysis of Complex Bacterial Communities. Appl. Environ. Microbiol.

    70, 6147–6156 (2004).



  • 54.

    Perez-de-Mora, A., Engel, M. & Schloter, M. Abundance and Diversity of n-Alkane-Degrading Bacteria in a Forest Soil Co-Contaminated with Hydrocarbons and Metals: A Molecular Study on alkB Homologous Genes. Microb. Ecol.

    62, 959–972 (2011).



  • 55.

    Jin, C. E. & Kim, M. N. Change of bacterial community in oil-polluted soil after enrichment cultivation with low-molecular-weight polyethylene. Int. Biodeterior. Biodegradation

    118, 27–33 (2017).



  • 56.

    Langille, M. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol.

    31, 814–21 (2013).



  • 57.

    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. In R Foundation for Statistical Computing (2009).



  • 58.

    Ramette, A. Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl. Environ. Microbiol.

    75, 2495–2505 (2009).



  • 59.

    Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics

    13, 31 (2012).



  • 60.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods

    7, 335–336 (2010).



  • 61.

    McMurdie, P. J. & Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One

    8 (2013).



  • 62.

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol.

    12, R60 (2011).







  • Source link


    Comments

    Popular posts from this blog

    Alcohol, Aging, and Curing Cancer